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Abstract 

This paper derives the analytics of seller and buyer participation in an 
auction hosting site, characterizes optimal hosting site pricing and inves
tigates the nature of competition between two auction houses or hosting 
sites that are differentiated in the eyes of the bidders. The auction sites 
earn revenue by setting positive listing fees, trading off the increased 
revenue per seller from higher fees with the revenue reduction from the 
loss of sellers. The reduction in the number of sellers participating in a 
site has feedback effects, as it affects the number of bidders who would 
choose to visit that site. The sellers set the reserve in each sale to max
imize their revenue. Unlike most prior models of auction site competi
tion, buyers have preferences for bidding in the two sites. These pref
erences may be driven by interface layout, prior experience with a site 
(which makes it less costly in terms of transaction costs to buy from that 
site), customer service experience, transaction reliability and reputation 
of sellers, and — more generally — anything that would fall under the 
rubric of site loyalty. Different buyers have different preferences for site 
interface and different experiences, resulting in some measure of hor
izontal differentiation between the sites. This differentiation between 
the two sites implies that even if they both set the exact same rules and 
pricing policies, some buyers would strictly prefer to purchase from one, 
while others would strictly prefer to purchase at the rival site. Prefer
ences for the two sites are not necessarily symmetric: one site may at
tract more buyers than the other even if the number of sellers in the two 
sites is the same. However, differentiation results in market power and 
positive economic profits for both sites. We start by the careful analysis 
of the monopoly case, in which the second of the two firms is absent. 
We then consider the effect of the entry of the second firm and inves
tigate how the equilibrium pricing policies of the two sites depend on 
the degree of differentiation, the degree of asymmetry between the sites, 
and the density of sellers. Though both sets of analyses are based on 
parameterized models, they form a testbed that can be generalized and 
modified to account for different types of pricing strategies and market 
features. 
Keywords: Platforms, Networks, Bidding, Internet markets. 
JEL Codes: D44, L 



1 Introduction 

Auction hosting sites, whether of the brick-and-mortar or Internet vari

eties, are firms whose product is the provision of a marketplace in which 

buyers and sellers can transact. Their product is essentially a platform 

that connects two sides of a market rather than a traditional physical 

product (see Rochet and Tirole, 2004, Armstrong, 2005, and references 

therein for a recent discussion on platforms and platform pricing). Much 

of the early literature on auctions abstracted from the presence of auc

tion hosting sites and considered auctions to be an interaction between 

the owner of an item (the seller) and many potential buyers (the bidders).1 

Moreover, the bulk of the recent auction literature that focuses on the In

ternet auctions and on big-item art auctions, where competition between 

auction houses or Internet sites is likely very important, focuses primar

ily on seller vs buyer issues and the dynamics of prices (within a series 

of auctions or across time) and only minimally on auction site vs auction 

site competition issues (see Bajari and Hortacsu, 2004, and Ashenfelter 

and Graddy, 2003, for two recent excellent surveys of this literature and 

associated issues). 

Some of the more recent literature recognizes that auctions are not 

merely interactions between a seller and the bidders, but rather that 

bidders often have a choice of which auction to attend, i.e., a choice of 

whose seller’s item to bid for. Sellers, in other words, often compete with 

1See McAfee and McMillan (1987a) and Klemperer (1999) for surveys of the early 
auction literature and Wolfstetter (1996) and Krishna (2002) for a textbook-style treat
ments of the subject. 
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each other, and often do so indirectly, through the venue at which they 

choose to stage their auction.2 Possibly the first contribution in this line 

of research is McAfee (1993) who considers competition between sellers 

through their choice of the reserve price. This work has been extended 

and generalized by Peters (1997), and Peters and Severinov (1997), who, 

as McAfee (1993), treat each seller as a “site,” and by Hernando-Veciana 

(2005) who explicitly considers seller production/opportunity costs.3 Re

cent literature has also developed in two additional and parallel direc

tions. Some authors (Burguet and Sakovics, 1999 and Schmitz, 2003) 

examine equilibria in reserve competition when the number of sellers is 

small (in fact, equal to 2). Other authors, including Anderson, Ellison, 

Fudenberg (2004) and Ellison, Fudenberg, and Mobius (2004), explicitly 

recognize the platform nature of auction hosting sites. All of these pa

pers, however, as well as recent work by Damianov (2005), do not con

sider the possibility that the auction hosting sites are differentiated in 

the eyes of the buyers and sellers, even when the number of buyers and 

sellers in each site is the same. Rather, hosting sites are only differen

tiated endogenously, i.e., by the equilibrium number of participants of 

each type that patronize them.4 

This paper bridges the gap between the platform competition litera

2Of course, very often sellers who choose the same venue compete with each other 
directly and simultaneously, something that is typically modeled by auction theorists 
as a multi-unit auction. 

3These papers consider seller competition to be in terms of the reserve being set; 
auctions are taken to be the chosen mechanism exogenously. Peters (2001) shows that 
second price auction will arise endogenously as the equilibrium mechanism in such 
environments. 

4A distinct piece of research by Parlane (2005) considers differentiation of products 
offered by otherwise homogeneous sites. 
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ture (which does not explicitly consider the structure of bidding compe

tition) and the competing sellers and/or auction sites literature (which 

does not consider the possibility of intrinsic differentiation between the 

sites). Unlike the extant literature discussed above, we explicitly recog

nize that auction hosting sites are differentiated in the sense that some 

bidders would strictly prefer to browse and bid in one site while other 

would strictly prefer to browse and bid in another. We also recognize 

that some sites may be “better” that the other in the sense that they 

would attract more bidders (and sellers) if they offered the same terms 

for participation. Finally, unlike much of the existing literature, we care

fully distinguish between strategic choices that are under the purview 

of sellers (who are short-run or one-shot players) and the hosting sites 

(who are long run players). Our aim is to understand the interplay be

tween site differentiation, seller behavior, and site strategies, and how 

these elements affect the equilibrium in the market for auction hosting 

services. 

We model horizontal differentiation of the auction hosting sites, from 

the point of view of buyers, using the standard linear city framework 

(Hotelling 1929). However, the two sites are also vertically differentiated 

in the sense that mean utility of shopping from one site is (potentially) 

higher than mean utility from shopping from the other site, even if the 

number of sellers and the posted reserve is the same for both sites.5 

With regards to site differentiation from the point of view of the sellers, 

5Economides (1989), Neven and Thisse (1990), and others, also develop extensions 
to the Hotelling model in which mean utility of the two brands differs across the two 
firms. 
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we assume that differentiation is sufficiently strong that the sites have 

effective monopoly power on that side of the market. Potential sellers 

who are “priced-out” of one site due to excessively high listing fees would 

rather choose to keep the items for themselves rather than set-up an 

account with the competing site.6 Such formulation allows us to identify 

the strategic effects from indirect, rather than direct, competition of sites 

for sellers. If a decrease in the listing fee attracts more sellers into a site, 

this affects the number of sellers who are attracted to the competing 

site not directly (through their diversion to the first site), but indirectly 

(through potential bidder site choices): As more sellers list in the first 

site, fewer buyers will frequent the competing site, thus reducing the 

value of that site to prospective sellers who would become more likely 

to abstain from selling there. 

The premise of auction hosting site differentiation is based on (and 

consequently, this paper is related to) much of the recent literature on 

competition between online retailers. Competition between Internet re

tailers has been initially perceived as ushering in a era of marginal cost 

pricing for the retailers. Underlying this prediction was the presumption 

that online retailers were undifferentiated in the eyes of potential shop

pers. In the last decade or so, however, it has become evident that this 

6In some respects, there is a resemblance between this work and research on endoge
nous bidder entry in auctions (see Engelbrecht-Wiggans, 1987, McAfee and McMillan, 
1987b, and Engelbrecht-Wiggans, 1993). In our model both seller and bidder entry is 
endogenous, with the site plays the role of “seller” in setting entry fees, albeit for po
tential sellers not potential bidders, while the bidder entry is determined by expected 
surplus they would obtain by visiting a particular site. Given that from the point of 
view of the price-setting agent entry is probabilistic, the closest model of bidder entry 
are those of Levin and Smith (1994) and Samuelson (1985), though in the latter the 
bidders learn their valuations prior to the entry decision. 
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has not been the case. Though online margins may be lower than those 

of brick-and-mortar retailers, they are certainly non-negligible. More

over, the lowest price online sellers are not the highest volume sellers 

(see Brynjolfsson and Smith, 2000). Not only are price/quantity more 

consistent with product markets with sellers that are both vertically and 

horizontally differentiated, but traditional marketing instruments, such 

as advertising, have the same qualitative effects on the prices and price 

dispersion of Internet retailers as they do on the prices of traditional 

retailers (see Clay, Krishnan, and Wolff, 2001). As the detailed, individ

ual customer-level, study by Smith and Brynjolfsson (2001) has demon

strated, Internet retailers have apparently been able to differentiate them

selves.7 Much of this differentiation has been induced by the introduc

tion of artificial informational frictions in online trading (see Ellison, G. 

and S. Ellison [2004a]). Not all of this differentiation, however, can be 

attributed to such “obfuscation” strategies: Internet book retailers, for 

example, appear to draw different types of clientele’s and have standard 

looking demand curves and cross-elasticities (see Chevalier and Gools

bee, 2003). 

Auction house competition is not limited to the online world. Brick-

and-mortar auction sites actively compete with each other for sellers, 

with buyers following the sellers into the bidding hall. The severity of 

such competition is illustrated by the scope and magnitude of attempts 

by Christie’s and Sotheby’s to suppress it. Ashenfelter and Graddy (2004) 

7A good discussion of findings on online markets and the implications for the 
broader Industrial Organization can be found in Ellison and Ellison (2004b). 
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provide a play-by-play discussion of the collusive agreement and the 

mode of competition between the auction houses, and also provide some 

anecdotal evidence that sellers have (to some extent) preferences for the 

two major auction houses. 

There are, however, differences between online and physical auction 

houses. Physical houses, for example, may be better able to enforce rules 

on reserves than online sites.8 Moreover, the extent to which bidder par

ticipation costs are driven by the cost of bidding rather than the cost 

of identifying items that they are interested in bidding in may vary be

tween the online and physical world and also for different item categories 

within the online world. For this reason, we develop a number of variants 

to our basic modeling framework to better capture variations in the bid

ding and competitive environment. Thus, our framework is not meant 

to apply solely to online or physical auction sites, but rather provide a 

more general basis for analyzing competition issues. 

2 Base Model Framework 

We consider two auction sites, A and B. There are M potential sellers for 

each site and N ·M potential buyers in the market. Potential sellers of site 

A are indexed by jA and potential sellers of site B by jB (to economize on 

notation, when there is no possible ambiguity and no need to distinguish 

between the potential sellers of either site, we will index generic seller by 

j). Potential buyers are indexed by i. Each of the potential sellers has a 

8In an online site, a site-imposed on reserve may be easier to circumvent through 
phantom bidding from a different account. 
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single item to sell and a cost of parting with that item that is equal to cS .9 

Denote the distribution of cS by G(·). The items owned by the potential 

sellers are differ within a site but are replicas of each other across sites: 

If a seller jA 
′ has a particular item, seller jB 

′ has that same item (though 

their costs of parting with that item are independent draws from G(·)). 
Thus, the two sites are totally homogeneous in terms of the nature of 

their (potential) content. 

Each potential buyer has an interest in purchasing a single unit of an 

item. The maximum willingness of bidder i to pay for a unit of the item 

owned by seller j, vi
j
, is an i.i.d. draw from the distribution Fj(v) and is 

private information. We assume that the bidder observes vi
j 

following his 

decision to visit one of the two sites. Implicitly, we assume that there is 

information about the details of the item and this information is observed 

only upon visiting the site. Alternatively, the process of browsing the site 

and bidding is necessary for the potential buyer to cognitively identify 

the maximum willingness to pay for that item. 

For simplicity, we assume that in each of the two sites, there is only 

one potential seller who owns the item that a particular potential buyer 

is interested in. The willingness of that buyer to pay for the items owned 

by the other potential sellers is zero. Formally, vi
j > 0 for j = j′ and 

9Costs of parting with the item can be thought of as transaction costs of putting 
it for sale. Alternatively, they can be thought of as the use value of the item for the 
seller. However, under this second interpretation, cS would affect the optimal reserve 
the seller would prefer to post. When the seller posts no reserve or the reserve is set by 
the hosting site, it makes no difference as to the nature of cS . When the seller chooses 
the reserve, we will treat cS as being a transaction cost. This is done for simplicity, as 
the nature of the results would not be affected if cS were thought of as the seller use 
value even when the reserve is set by the seller. 
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vi
j > 0 for j �= j′ . Moreover, we will also assume for simplicity that 

for each potential seller there are exactly N potential buyers that are 

interested in the item that he offers for sale. The other potential buyers 

have zero willingness to pay for it. Therefore, there is no substitutability 

between the items offered for sale within a site, and items do not differ in 

their “popularity.” These assumptions are sufficient to allow us, without 

further loss of generality, to limit ourselves in the case of M = 1. 

Sites are described by the costs that potential buyers must incur in or

der to transact there. These costs could include the costs of browsing the 

site to identify whether an item they are interested in is indeed there, the 

costs of finding the item, reading its description, setting up an account 

(if they do not have one), bidding, and obtaining the item. Sites differ in 

terms of their layouts and potential buyers differ in terms of their pref

erences for layouts and their prior experience with them. Therefore, the 

transaction costs for each site differ from bidder to bidder. Each bidder is 

characterized by their location xi which indexes their relative preference 

for the layout of site A. The transaction costs of bidder i for site A are 

equal to ti
A = cA + θxi and the transaction costs of that same bidder for 

site B are equal to ti
B = cB + θ(1 − xi). Notice that this is similar to linear 

“transport” costs in a Hotelling type of model, albeit one that augments 

them with a cost component that is that the same for all potential buyers 

but which is potentially different between the two sites. This second cost 

component (cA or cB) allows the two sites to differ vertically. 

The strategy space for each of the actors in this market is as follows. 

Sites decide on the listing fee to charge to the sellers (in a future variation 
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of the standard model, we allow the sites to also influence the reserve). 

Potential sellers decide on whether or not to pay the listing fee and put 

their item for sale. They also decide on what reserve to place on their item 

(except in a future variation of the model in which the reserve is set by 

the site). Buyers decide which auction site to visit and, if they identify an 

item they are interested in purchasing, how much to bid for it. Auctions 

are second price English format with a secret reserve or with a reserve 

that is not observed until after the prospective buyers have committed 

to a particular site. 

The timing of the actions is as follows. Auction sites set the listing 

fee simultaneously. Potential sellers decide on whether to put their item 

for sale or keep it to themselves. The reserve is set, but is not observed 

by the buyers until after they commit to a site (or later). Potential buyers 

decide which site to attend, knowing the fraction of potential sellers that 

choose to sell their items in each of the two sites (and anticipating the 

equilibrium reserve). They incur participation costs and identify whether 

their valuation exceeds the anticipated reserve.10 They enter the English 

auction, determining as the price rises whether or not it exceeds their 

maximum willingness to pay. The winner is the last bidder to remain in 

the auction and payoffs are realized to all players. If a potential buyer is 

unsuccessful in a particular site, he cannot (or is assumed not to) attempt 

to browse and bid on the competing site.11 

10In a variation of the model, we considered the possibility that the participation 
costs are incurred after the bidders enter the auction, i.e., they are bidding costs. Many 
of the features of the two models appear to be similar, but this model variation has 
not been analyzed as thoroughly as the base model. 

11One possibility is that each buyer has a limited time to browse and bid. Another 
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With regards to the nature of the equilibrium, we assume forward ra

tionality and are looking for stable equilibria in an (infinite) replication 

of the above game in which the two sites are long-run players and sellers 

and buyers are short-run players who only participate in one shot of the 

game (or are atomistic and anonymous so that their current actions do 

not impact future rounds of the game).12 When there is a multiplicity of 

equilin one of which is symmetric, we consider the symmetric equilib

rium.13 

In what follows, we first develop a number of examples, and then 

proceed with more general and formal analysis. Both the examples and 

the formal analysis commence with the monopoly case. This allows us to 

highlight some features as transparently as possible. Then, we introduce 

the second firm, and discuss the effect this has in the analytics of market 

equilibrium and pricing. 

3 A Tale of Three Examples 

Most of the insights of this model can be obtained by the careful anal

ysis of three examples, chosen so as to illustrate much of the range of 

possible equilibria that can arise. The first example considers a single 

auction hosting site, A. The participation costs of potential buyers are 

possibility is that the auction in the competing site has concluded and that other sim
ilar items will not appear in an timely fashion. Of course, it is possible to relax this 
assumption at some increase in the model’s complexity (though it is clear from the 
model development that much if not all of the development of the results will not be 
affected qualitatively. 

12Stability is important because there are also equilibria in the entry decision of the 
sellers that are not stable to small random fluctuations to likelihood of seller partici
pation. 

13However, we discuss throughout instances of asymmetric equilibria. 
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uniformly distributed in [cA, cA + θ]. Effectively, this is the Hotelling 

model in which there is only one firm at the one end of the unit inter

val. The participation of potential sellers are uniformly distributed in 

[0, 2µ]. One of the features of this example is that there are equilibria in 

which all the buyers and all the sellers participate in the website. In order 

to preclude these full-participation corner solutions, we develop a sec

ond example in which the costs of sellers are distributed exponentially 

with mean µ. Finally, the third example considers competition between 

two firms at opposite ends of the unit interval, with consumers being 

uniformly located on it. In this example, we retain the assumption of 

exponential distributed seller costs. In all three examples, buyers valua

tions are uniformly distributed on [0,1] and sellers post a hidden reserve 

that is optimally (for them) set at 1/2. 

3.1 Example 1: Monopoly with bounded seller costs. 

Consider first the case of a single auction hosting website at one of the 

end-points of the Hotelling interval. We refer to this site as site A and 

place it at x = 0.. 

3.1.1 Bidder Behavior 

In Figure 1 we plot the “location” of the consumer who is indifferent 

between browsing site A and taking part in some other activity, which 

assumed to give constant utility (= 0). We denote the location of this 

critical consumer by xc . That is, letting q denote the probability that a 

sought-after item will be found at the auction site and letting c and θ 
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denote the costs to the bidder described above, xc is implied by 

qE [π|xc] = cA + θxc 

As xc becomes larger, the number of consumers who browse site A in

creases in the first order stochastic dominance sense. We plot xc for 

three sets of parameter values. The first (solid line) is for c = 0.02 

and θ = 0.05, the second (dotted line) for the same value of cA but for 

θ = 0.010, while the third (dashed line) is for cA = 0.04 and θ = 0.010. 

For Figures 1 through 32, an expression in the legend of the figures of 

y017 means y = 0.017 and similarly for any other number and parame

ter. 

As the figure shows, the set of participating consumers increases with 

the probability that they will find an item that they are interested in, but 

not linearly. This function is concave because (i) if the set of consumers 

was kept constant their utility would increase linearly as q goes up, but 

(ii) since with q going up the set of participating consumers goes up, 

the probability of each participating consumer winning the item goes up 

slower than linearly. With “transport” costs being linear in the set of 

consumers, the location of the critical consumer is concave in q. 

An increase in c shifts this line to the right in a parallel fashion. This 

makes sense, since with linear “transport” costs an increase in c corre

sponds to a particular change in the distance from the origin, holding xc 

constant. Because this argument suggests a shift to the right rather than 

a seemingly equivalent shift downwards, in general, the vertical distance 

between two xc functions is not likely to be constant (though it is for 
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this example). The reason is that, for a fixed value of q, the values of 

xc are different and as xc changes, the number of participating bidders 

changes as well. In fact, a change in c does not lead to a change in xc of 

∆c 
θ but by a smaller amount. 

Similarly, an increase in θ tilts this function downwards, around the 

point that xc = 0. With linear transport costs, a change in θ translates 

into a proportional loss of surplus to the buyers (of a particular location). 

In general, as θ goes up, the xc function stretches to the right. Finally, 

notice that in Figure 1, for sufficiently low values of θ and cA, the xc 

function tops-off at 1, since consumers are located on the unit interval 

(to make a comparison with the duopoly meaningful). If consumers were 

located on the half-line (i.e., if there were always marginal buyers), then 

this line would be increasing monotonically in q. 

3.1.2 Seller Participation 

Figure 2 plots the revenue of a seller, gross of entry costs, as a function 

of the anticipated bidders’ assessment of that any individual seller par

ticipates in the auction (in equilibrium perceptions will be correct). Seller 

revenue (gross of entry costs) responds to changes in θ and c in the same 

way as the location of the indifferent consumer, xc . 

seller expected revenue: E Rev xc(cA, θ, q)  − f 

The shape of this function with respect the probability that a seller is 

perceived by the buyers to be at the site, i.e., with respect of the perceived 

probability that the consumers will find an item that is a match for what 
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they are looking for, deserves some discussion. Recall that xc is concave 

in this probability, q. Then, if revenue is concave in xc , it would also be 

concave is q. But as xc goes up, the distribution function of the number 

of bidders shifts in a way that it puts more weight on a higher number 

of bidders and increases the mean number of bidders linearly. Given 

that revenue is concave in the number of bidders when the number of 

bidders is not stochastic (possibly for all cases, but certainly for well 

behaved ones), the expected revenue of the seller is concave in xc , and 

hence in q. This argument is made more formally in the analysis of the 

generalized model in a later section of the paper. 

The seller revenue function does not include the seller participation 

costs. These costs, which differ across sellers, are being plotted along 

with a revenue function, in Figure 3. 

seller cost: cS(q) + f 

While f is given for all sellers (and here assumed to be 0), cS is distributed 

across sellers. Thus, the dashed line is the inverse cost distribution func

tion (of seller costs). It is gives the entry cost of the seller in the qth cost 

quantile. Because this function has been plotted for µ = 0.3, the highest 

possible seller cost is equal to 0.6. Since in this example the distribution 

of costs has been assumed to be uniform, the inverse cost distribution 

function is linear with a slope of 0.6. In this example, this line lies ev

erywhere above the revenue line, plotted for cA = 0.02, θ = 0.05, and 

listing fee f = 0. This means that for any fraction, q, of sellers that sell 

their product in the website, the revenue they would earn if consumers 
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have correct expectations about q, will not be sufficient to cover the entry 

costs. Thus, given that the fee has been set to zero, for these parameter 

values, there will be no auction hosting site in operation. 

3.1.3 Market Equilibrium 

For a market to exist, either the costs of sellers or those of the buyers 

must be (stochastically) lower. In Figure 4, we assume that the buyer 

costs have fallen uniformly for all buyers by 0.001 (an improvement in 

browser technology?). Now, the inverse cost function intersects the rev

enue function in two points. Therefore, there are two equilibria in the 

entry game. 

The low q equilibrium is unstable: any random increase in seller entry 

or any slight consumer mis-perceptions will either lead to a demise of 

the market, or to an increase in q. The high q equilibrium is stable. This 

figure is somewhat generic, with two entry equilibria often being present. 

In this paper, for the most part we restrict our attention to the stable, 

high q, equilibrium. Note that there is, in fact, a third equilibrium: that 

of q = 0. When there is a positive q equilibrium, we will ignore the 

q = 0 equilibrium. However, it is worth keeping in mind: these markets 

may need a “push” to get going. Else, if sellers expect to see no buyers 

and buyers expect to see no sellers, neither will have any incentives to 

participate in the auction hosting site — there is a complete coordination 

failure. 

Is there any other possibility in terms of equilibrium? Yes. Suppose 

that through further improvements in technology or through experience, 
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sellers have lower costs of selling through the website. In particular, sup

pose that the mean of seller costs drops from 0.3 to 0.2, resulting in a 

downward tilting of the inverse cost distribution function. Now, the sta

ble equilibrium involves 100% seller participation. If all sellers participate 

in the website, even the marginal seller (the one with the highest possible 

costs) will earn positive profits. 

This corner solution arises from the parametric assumption on the 

distribution of seller costs that assumes that the highest possible cost 

is finite. Nevertheless, it is instructive to consider this case (in exam

ple 2, we will turn to a parametric formulation with an unbounded cost 

distribution in a moment). 

3.1.4 Auction Site Listing Fees 

Given that the strategic variable of the auction hosting site is the listing 

fee, as a prelude to construction of the site profit function, it is instruc

tive to show what the effect of the listing fee is on the entry equilibria 

shown in the preceding two figures. In Figure 6, it can be seen that a 

positive listing fee shifts downwards the revenue function in a parallel 

way. This result is not specific to this example and follows directly from 

the expression of the revenue function. If the initial equilibrium involved 

100% seller participation, a small fee will not deter any seller, and will 

raise revenue for the firm. Eventually, however, as the listing fee raises 

beyond a threshold, some sellers will choose not to participate on the 

website. Further increases in the listing fee will trade off a reduction 

in the number of sellers that participate in the site with an increased 
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revenue from each seller (the traditional monopoly trade-off). Since we 

assumed that the site’s marginal costs are zero, this process will continue 

until marginal revenue is zero. 

Or maybe not!!! Consider Figure 7, which is purposefully drawn for 

a higher value of consumer participation costs than Figure 6. The figure 

shows the entry equilibrium for zero listing fees, in which there is 100% 

for both sellers and buyers, then for listing fees of 0.02 and 0.03, in which 

range there is less than 100% participation of sellers, but still full buyer 

participation, and then for a listing fee of 0.04, for which there is less 

than full participation of both buyers or sellers. All these fee increases 

are profitable for the auction hosting site: the first one trivially so, since 

it results in no loss of sellers (The subsequent increase from 0.02 to 0.03 

results in a loss of only about 5% of the sellers, with a gain of 50% per 

seller, and the final increase results in a less dramatic increase in site 

revenue). 

Could the firm reach the optimum by further slight increases in the 

listing fee, as we often teach in intro micro? Consider now Figure 8, 

in which the auction hosting takes another small increase in the listing 

fee, to 0.05. Figure 8 shows that this increase, rather than resulting in 

a marginal change in site revenue, leads to a collapse of the market and 

zero revenue! Conceptually, the market collapse is due to the following 

negative feedback mechanism. The slight increase in the fee leads some 

sellers to leave the auction hosting site. This in turn reduces the number 

of potential buyers that visit the site, thus reducing the value of the site 

to the sellers, leading to further exit of sellers, and market implodes. A 
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mistake in setting the listing fee, if not corrected sufficiently quickly, can 

lead to the demise of the site. 

The negative feedback described here is present for all listing fee 

changes, but as Figure 7 shows, the site can reach an equilibrium mem

bership short of a complete collapse. Indeed, the initial changes in the 

listing fee where profitable for the site. However, in Figure 8, we can 

see that the optimum listing fee may be in a knife edge point. A slight 

increase past the optimum may be very very costly. In other words, the 

profit function at the optimum may not be zero, but rather positive, with 

a discontinuous drop past the optimum. 

One can piece together the seller participation probabilities from the 

entry equilibria of figures such as those above to construct the demand 

curve for the auction hosting site (notice that the demand curve is “flipped” 

from the normal way that we are used to seeing demand curves, with 

quantity being plotted on the vertical axis). Notice that very rapid tran

sition from 100% seller participation to market shut-down as the fee in

creases. 

To illustrate the extent to which the negative feedback in the entry 

game leads to this rapid transition, it is instructive to see what this de

mand curve would look like in its absence. In Figure 10, we plot using 

a dotted line the auction site demand function if the number of con

sumers participating in the website where fixed to 2 (100% consumer 

attendance). One can see that the corresponding demand would have 

been much flatter (or much steeper when looking at the inverse demand 

curve). For very low fees, when seller participation is 100%, the two de
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mand curves coincide and are flat. For slightly higher fees, they still 

coincide because, even though the number of sellers drops below 100%, 

it is still high enough that the consumer participation is 100%. For even 

higher fees, the demand with the negative feedback diverges strongly 

from the demand with an exogenous website value. If instead we fixed 

the number of participating bidders to 1, the demand curve shifts in, but 

it’s slope is unchanged (except at very low fees, because for these param

eter values seller participation would not reach 100% even for a fee of 

zero if the number of bidders is equal to 1). 

The stark observation is that this negative feedback reduces the pric

ing ability of the auction hosting site by flattening the inverse demand 

function the website. This is true even if the there is substantial hetero

geneity in the opportunity costs of the demanders of the auction site’s 

services. The features of the demand curves shown in Figure 10, may 

not exist for all parameter values (e.g. the two demand curves may not 

coincide for any segment, or they may not be flat at any segment). But 

the main conclusion above regarding the relative elasticity of the demand 

curve holds generally. 

The optimum fee is at “an edge of the cliff” of the profit function, 

as shown in the profit function drawn with a solid line in Figure 11. At 

the optimum, the profit function is continuous, but not differentiable. 

Decreasing the mean consumer attendance costs leads to higher profits 

and a differentiable profit function peak (as shown by the dotted line). 

Note that for both profit functions, the initial segment is the 45-degree 

line (plotted as a dashed line), as initially increases in the fee do not result 
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in any loss of sellers for this example. 

Decreasing θ, i.e., decreasing the dispersion of buyer attendance/ 

browsing costs, increases the profits of the site. This is is because as long 

as there is no full consumer participation, an decrease in theta increases 

the number of participating consumers, and thus shifts the demand for 

site services outwards. However, a decrease in θ makes the number of 

participating consumers very responsive to changes in q, thus making 

the revenue function steeper. This, in turn, increases the propensity that 

the optimum will be at the point of non-differentiability (the "cliff"), as 

Figure 12 shows. In fact, it results in an optimum that is at 100% seller 

participation, if the market cannot be supported at less than 100% seller 

participation at the optimal listing fee. [By changing the value of θ we 

change both dispersion and the mean of attendance costs, but this makes 

no difference in the qualitative conclusions here.] 

One should point out, in passing, that “standard looking” profit func

tions are not precluded, as Figure 13 shows. In fact, in this example, even 

at a fee of zero, seller participation is less than 100%, and thus the profit 

function involves a trade-off between number of sellers and and profit 

per attending seller starting from the origin (see that the 45-degree line 

is everywhere above the profit function). The example differs from the 

previous ones in that the value of θ is larger, making the revenue func

tion flatter, the value of cA is smaller, shifting the revenue function up, 

and the mean of sellers costs is higher, making the inverse cost distribu

tion function steeper. All of these changes reduce the likelihood of full 

participation corner solutions. 
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3.1.5 Optimal Site Fees 

We now turn our attention to optimal auction hosting site pricing policy, 

i.e., to the optimal value of the listing fee. Figure 14 plots the optimal 

listing fee as a function of θ for three different values of the consumer 

browsing costs, cA . The optimal fee is generally declining in the level 

of consumer participation costs, whether these manifest themselves in a 

terms of higher θ, as shown here, or in terms of higher cA (figure omit

ted, but can be inferred by the three lines plotted here). There is a flat 

region for low values of θ, which is driven by the fact that for low θ there 

is 100% consumer participation. In fact, when θ drops to some threshold 

value which ensures 100% consumer participation, website optimal pric

ing and profits are not affected by further declines in θ. Such declines 

only increase the surplus of the bidders. 

This may sound a bit paradoxical: Why can’t the website take further 

advantage of the reduction in the costs of buyers? The intuition for this 

as follows: Buyer attendance provides revenue to the sellers, and it is this 

revenue that generates the demand for website’s product (since the site 

charges the sellers). The sellers have no way to extract more surplus from 

the bidders as their participation costs drop (holding bidder participation 

levels constants). Therefore, their surplus (and demand) for site services 

is not sensitive to bidders costs once the market is fully covered. Since 

demand for site services is not responsive to θ for very low θ, then the 

optimal fee is not responsive either and profits are not affected. 

More generally, if consumer participation costs were not bounded 
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from above, but rather there was a progressively thinning set of con

sumers with higher and higher participation costs, the optimal fee would 

not have been completely flat for low θ. However, for low θ, when the 

you have gotten almost all the consumers attending and the density of 

marginal consumers drops, the optimal fee can be relatively unrespon

sive to further reductions in consumer costs. 

One last thing to notice in Figure 14 is that in the downward-sloping 

part, even though revenue is concave in xc , which is linear in θ holding 

everything constant, the optimal fee raises faster than linearly as θ drops: 

the reason is the feedback mechanism. As θ drops, more buyers attend, 

which increases the value of the site to the sellers, leading more of them 

to attend, thus increasing the value to the buyers, etc. 

In Figure 15, we plot the optimal fee as a function of the mean of seller 

costs for three different levels of consumer participation costs. The op

timal listing fee is generally declining in the mean of seller participation 

costs. However, for some range of µ, there is unresponsiveness of the 

optimal fee on µ, as can be seen by the lines drawn for cA = 0.00 and 

cA = 0.01. Moreover, the listing fee can be insensitive to buyer atten

dance costs, even though it generally declines with cA (compare across 

the three lines). 

In order to understand the shape of the optimal fee function, it is in

structive to compare this function with the one that would have resulted 

had the level of bidder participation been held fixed at some level. If that 

were the case, the auction hosting site’s inverse demand function would 

be linear (with a possible kink and vertical drop if at low fees there was 
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100% seller participation). In that case, the optimal fee is independent 

of µ, as a change in µ does not affect the y-axis intercept of the inverse 

demand function, but rather only its slope. The only exception is if the 

optimal listing fee is at the kink, in which case it declines with µ, as  an  

increase in µ reduces the price that corresponds to the kink in the in

verse demand function. Therefore, for the optimal fee function drawn 

for cA = 0.00, the initial downsloping portion corresponds to pricing at 

the kink and the subsequent flat portion corresponds to pricing when 

there is full consumer participation. It is the right-most part of the opti

mal fee function that is “different” from the standard monopoly pricing 

case, as further increases in the listing fee reduce consumer participa

tion, and thus the value of the website to sellers, leading to a shifting in 

of the inverse demand function and a reduction in the optimal price. 

This flat region in figure 15 has to do with 100% buyer participa

tion, not 100% seller participation, and hence could still occur if seller 

costs had unbounded support. One may think that the fact this non-

responsiveness is caused by 100% (consumer) market coverage makes it 

less interesting of a finding. But the more general implication is that 

when you get the bulk of the consumers, and there are few more con

sumers to be had, the listing fee will be relatively unresponsive to changes 

in costs. 

The above discussion also provides the intuition of why the optimal 

fee is not always sensitive to small changes in cA . When there is full 

consumer participation, such small changes do not affect at all the web-

site demand function, and hence the optimal price it charges. In Figure 
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16, the profit function is plotted directly, and it can be directly seen that 

the optimal fee can be the same for small changes in µ and cA . The top 

of the profit function is either the same across lines (when cA changes 

and µ is held constant) or shifts down in a parallel fashion (when µ goes 

up and cA remains constant). 

3.2 Example 2: Monopoly with unbounded seller costs 

We now turn to the second example, in which the distribution of seller 

entry costs is unbounded. We focus on the changes that this unbound

edness has on the results (and figures) discussed thus far. The starting 

point of any differences is that with unbounded support of seller partic

ipation costs, there can be no entry equilibrium with 100% seller partic

ipation: the inverse cost distribution function asumptotes to infinity as 

q goes to 1 (see Figure 17). However, there can be equilibria in which 

there is 100% consumer participation, as shown in this same figure: at 

the point of intersection of the inverse cost distribution function with 

the revenue function, the latter is flat. 

Many of the dramatic features discussed earlier, such as the market 

implosion, do not depend on 100% participation of either seller or buyers, 

or in the linearity of the inverse cost distribution function, and hence 

can take place here as well, as Figure 18 shows. However, because 100% 

seller participation is no longer possible, the website demand does not 

have a flat portion close to the origin (i.e., for very low fees). However, the 

key feature of rapid reduction in demand is still present (see Figure 19). 

Increasing the dispersion and (slightly) reducing the mean of consumer 
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costs leads to a “flatter” demand curve for website services. 

As in the example with uniformly distributed seller costs, these de

mand curves are a lot steeper compared to the standard demand curves, 

that is the demand curves for which consumer participation is held con

stant (see Figure 20). They also have the feature (just as was the case 

with the uniform distribution) that the inverse demand functions (i.e., 

the functions that plot the price or fee versus seller participation) are 

flat at the top. Moreover, like in the uniform case, the website profit 

functions have the feature that the peak can be right at the edge of the 

market collapse threshold, or very close to it (see Figure 21). 

The optimal fee functions, when plotted against θ, look similar to 

those under uniformly distributed seller costs. They are flat for low 

values of θ, corresponding to parameters values for which at the op

timum fee there is 100% consumer participation, and slope downwards 

for higher values of θ (see Figure 22). However, there is some qualita

tive difference when the optimal fee functions are plotted against µ. As  

Figure 23 shows, optimal fee functions are no longer flat at any range 

because even when there is 100% consumer participation, a change in µ 

in an exponentially shaped demand curve affects the optimal price (the 

exponential shape refers to the cumulative distribution function which 

generates the demand curve). Also, as Figure 23 shows, for low seller 

costs, when the optimal fee is such that 100% of consumers attend, the 

optimal fee is independent of consumer attendance costs, as a change in 

such costs does not affect the website’s demand function around the op

timum (also see Figure 24 which shows that at the old entry equilibrium, 
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a change in cA does not affect the revenue function locally). 

3.3 Example 3: Duopoly with unbounded seller costs 

We now introduce a second auction hosting site at the other end of the 

unit interval (site B), maintaining the assumption of exponentially dis

tributed seller costs. We consider parameters such that the market is 

fully covered, i.e., every consumer browses one of the two websites. We 

also generally consider parameters such that both websites attract poten

tial buyers. This means that from the point of each of the two websites, 

there is never “full” consumer participation, and more consumers can 

be attracted if the value of the auction hosting site to them increases. 

We distinguish between the bidder cost component of browsing a site 

(which is common to all bidders) as cA and cB . Similarly, we will later 

distinguish between the listing fee of site A from that of site B. The 

distribution of seller costs is assumed to be the same for the two sites, 

and as discussed in the model preliminaries, sites have monopoly power 

over their respective set of sellers. To facilitate comparability with the 

monopoly examples, we consider the viewpoint of auction hosting site A 

with location at the left end-point of the unit Hotelling interval. 

One of the first major differences for the duopoly case can be ob

served by considering the plots of xc — the location of the consumer 

who is indifferent between browsing from site A and site B. As Figure 

25 shows, in contrast to the monopoly case, θ both tilts and shifts the 

location of the indifferent consumer (cA continues to give a parallel shift 

as before). The reason why θ rotates the location of the indifferent buyer 
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is because the value of the potential consumer’s alternative choice (the 

website B), is also affected by a change in θ. In fact, θ rotates the location 

of the critical consumer around the value of qA that results in the two 

firms splitting the market. For that value of qA, a change in θ does not 

lead to a change in xc , because it affects the value of webiste A as much 

at it affects the value of the website B (to the consumer). 

In Figure 25, the market is split when qA = 1 (for cA = cB and qB = 1), 

so the dotted and solid lines pivot around qA = 1. Effectively, a change in 

θ pivots the line around its intersection with the horizontal line xc = 0.5, 

not the horizontal line xc = 0 (which is the monopoly case). In Figure 26, 

for which we consider cA > cB and qB = 0.5, the market is divided when 

qA ≈ 0.67. Therefore, a change in θ pivots xc around that point. Notice 

that the xc = 0.5 line goes through the point of pivoting. 

With regards to the response of xc to the other parameters, shown in 

Figure 27, cB results in a parallel shift, while qB leads to both a tilt and a 

shift (the shift is really what dominates). 

The fact that theta pivots xc , and hence the revenue function, around 

the point in which the market is shared equally between the two firms, 

has direct implications on the effect of a change in the degree of differen

tiation between the two sites on the entry equilibrium. Consider Figure 

28, which has been drawn for parameter values such that the market is 

equally shared between the two firms when qA ≈ 0.8. An increase in θ 

can allow a site that is not in business to enter business, even though 

it leads to uniformly higher consumer costs. In this figure, costly dif

ferentiation can help website A. Qualitatively, this finding is similar to 
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traditional Hotelling models. What is different is that as θ increases, the 

seller (and buyer) activity at site A can increase discontinuously: Site A 

does not get a foothold, which it can expand as differentiation increases, 

but rather it attracts up to 40% of the maximal seller activity upon en

try. The positive feedback between the number of sellers and number of 

buyers means that there is a minimum scale of activity for each of the 

two websites. 

Figure 29 shows the effect on the entry equilibrium in site A as there 

is an increase in the seller activity in the competing. It can be seen that an 

increase in qB shifts the revenue function of sellers at site A downwards. 

Threshold effects at which site A suddenly “shuts down” as the activity 

of site B increases can exist here as well. 

We now turn to the equilibrium seller participation, for given fee lev

els. In Figure 30 we examine symmetric sites charging identical fees and 

shown that equilibrium seller participation declines with µ, as expected. 

Because these are symmetric sites, a change in θ has no effect, and nei

ther does a (symmetric) change in cA and cB . 

The entry equilibria that are plotted in Figure 31 are symmetric. There 

are often also asymmetric entry equilibria for these same parameter val

ues! For example, set µ to 0.16, the fees to zero, and keep the other 

parameters the same as those in Figure 30. The symmetric equilibrium 

is shown in Figure 31, which plots the revenue and inverse cost distribu

tion functions for the sellers in site A. It can be seen that we are in an 

equilibrium, as the site-equilibrium value of qA given the value of qB is 

equal to qB (recall that the other parameter values for the revenue and 
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cost function at site B are the same as those at site A). 

Figure 32 shows that for these same parameter values, there also ex

ists an asymmetric equilibrium, in which qB = 0, and qA is higher than in 

the symmetric equilibrium. Such asymmetric equilibria do not exist for 

low µ and low fees. If µ is so low that participation in one site is posi

tive even when all consumers would go to the other site under monopoly 

and seller activity in the other site is at the monopoly level, then this pre

cludes site shutdown in an asymmetric equilibrium. [Simply picture what 

would happen in Figure 32 if the cost function were to move downwards.] 

We now turn to a formal analysis. 

4 Theoretical Analysis 

In this section we derive some general relationships and propositions 

concerning equilibrium in monopoly. These are applied to the duopoly 

case in the subsequent section. Throughout, for notational convenience, 

we assume that reserves at the auction site are set to zero (yet, there are 

positive listing fees, f ). 

4.1 Preliminaries 

Suppose that there are N potential bidders distributed uniformly on the 

interval [0, 1]. Let xn denote the location of bidder n in [0, 1]. And let 

x(n) denote the location of the nth bidder on [0, 1]. Thus, x(0) is the 

location of the bidder located most to the left (the smallest value of xn) 

and x(N) is the location farthest to the right (i.e., the largest value of xn). 
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Lemma 1 Let xc ∈ [0,1]. The probability that there are exactly n ∈ 

{0,1, . . . , N} potential bidders in the interval [0, xc] is given by, 

h(n|xc) := Pr x(n) ∈ [0, xc] ∧ x(n+1) � = 
N 

xcn(1 − xc)N−n∈ [0, xc] . 
n 

And the probability that there are no more than n bidders in [0, xc] is 

given by, 

H(n|xc) := Pr x(n+1) � = 
n ( 

N 
) 

xcm(1 − xc)N−m∈ [0, xc] . 
m m=0 

This lemma gives the respective probabilities of auctions with differ

ent number of bidders, given a critical value of xc . 

Notice that this is the relevant number of bidders from the perspective 

of the seller and host site. However, a bidder, in making the calculations 

on what to expect, will be interested not in the total number of bidders, 

but in the number of rivals that are there. 

4.2 Bidders’ Problem 

Lemma 2 Suppose there are n ∈ {0,1, . . . , N} bidders at an auction. Sup

pose further that their values are i.i.d. draws from the distribution F(y)  

on [0, v]. Then bidder i’s expected payoff when having value vi is given 

by 

Eπ(vi,n)  := vi − E v(2)|vi = v(1) Pr{vi = v(1)} 
vi 

= [F(y)]n−1dyF(vi). (1) 
0 

Proof Let F(2|vi) := F(v(2)|vi = v(1)) denote the distribution of the 

second highest value, given that vi is the highest. Then note that, by 
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integration by parts, 

[ ] vi vi 
E v(2)|vi = v(1) = ydF(2|vi) = yF(2|vi)|vi − F(2|vi)dy0 

0 0 ∫ vi )n−1 

= vi − 
F(y)  

dy, 
0 F(vi) 

and the result follows. � 

In general, let a bidder’s expected payoff before the auction begins 

(i.e., before his value is revealed), but after he has incurred the transac

tions costs associated with going to and browsing the site, be defined 

as: 

∫ v ∫ w 

E[π(n)] := EviEπ(vi,n)  = [F(y)]n−1dyF(w)f(w)dw. 
0 0 (2) 

That is, E[π(n)] is the expectation of Eqn. (1) with respect to the bidder’s 

value, vi. 

Prior to going to the auction site, however, it is not yet known if indeed 

the seller is there. Letting q ∈ [0, 1] denote the probability that the 

seller is at auction (given a listing fee of f ), we can determine the critical 

threshold location of the bidder ex ante. Thus, if the cut-off value for 

going to the auction is given by xc , and the bidder in question attends 

(i.e., his location is xi ≤ xc ), his expected payoff is 

N−1 

E[π(xc)] := EnE[π(n)] = q 
∑ N − 1 

c (1 − xc)N−1−nE[π(n)] xn 

n n=0 

Lemma 3 (Critical Distance to Auction Site) Let θ measure the (lin

ear) ‘transportation’ cost to the auction site and let cA denote the cost to 

the bidder of browsing the site. Then, for an equilibrium in which partic

ipation is sensitive to bidder location, xc ∈ (0, 1) is implicitly defined by 
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the following relationship:


N−1 

q 
∑ N − 1 

xcn(1 − xc)N−1−nE[π(n)] = cA + θxc ; (3)
n n=0 

otherwise ⎧ 

xc = 
⎨ 

⎩ 
1, 
0, 

large q and small cA and θ 

else. 

Figure 1 gives some insight into the behavior of this relationship. 

4.3 Seller’s Problem 

Again, supposing there are n ∈ {0, 1, . . . , N} bidders whose values are 

i.i.d. draws from the distribution F(y)  on [0, v]. Then the expected rev

enue generated is given by the expected value of the second highest order 

statistic. Thus, 

E[R(n)] := E v(2)|n . (4) 

Thus, letting again the bidders’ cut-off value for going to the auction 

be denoted by by xc , the seller’s expected revenue from going to the 

auction, before knowing the number of bidders present is given by 

E[R(xc)] := EnE[R(n)] 
N [ ] 

= 
∑ N 

xn(1 − xc)N−nE v(2)|n ,cn n=2 

where we start at n = 2, since (without a reserve) the revenue is zero 

unless at least two bidders are present. 

Therefore, letting cS denote the sellers cost of going to auction, for 

given xc , a sellers’ payoff from going to the auction is 

EΠS = E[R(xc)] − cS − f ,  (5) 
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where, again, f is the listing fee. 

Lemma 4 (Seller Participation) Let the distribution of sellers’ costs be 

denoted by G(cS). Then, for E[R(xc)] > f , the probability that a seller 

attends the site is implied by: 

q = Pr cS ≤ E[R(xc)] − f ⎛ ⎞ 
N 

= G⎝∑ N 
xcn(1 − xc)N−nE 

[ 
v(2)|n 

] 
− f⎠ ; (6)

n n=2 

otherwise q = 0. 

4.4 Equilibrium for given site fee, f 

4.4.1 Concepts 

We distinguish between four (non-exclusive) types of equilibrium config

urations. 

Definition 1 (No-Trade Equilibrium) In a no-trade equilibrium (NTE) 

the auction hosting site is vacant, so there ar no sellers and no bidders. 

We have q = xc = 0. 

A No-Trade Equilibrium exists for all parameter values, since the exis

tence of the market is part of a coordination game, with the no-trade 

outcome coinciding with the potential Pareto inefficient outcome. How

ever, a NTE  may also be unique. Indeed, the NTE  is unique whenever 

the listing fee, f is so large that sellers do not wish to participate, or the 

cost of getting to (θ) or browsing (cA) the site is prohibitively high so that 

bidders to not visit the site (see Figure 3). 
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Definition 2 (Full Supply Equilibrium) If, in equilibrium, q = 1, we  

speak of a full-supply equilibrium (FSE). 

Note that if the support of seller participation costs is unbounded, i.e., 

G(cS) <  1,∀cS < ∞, then a FSE  can be ruled out. Moreover, however, 

even is cS is bounded above, a FSE  can only emerge as a limiting case, 

since otherwise the host site could increase the listing fee without affect

ing seller participation (thus, also without affecting bidder participation), 

which results in strictly greater profit for the host site. Thus, while keep

ing in mind that a FSE  may emerge if seller costs cS are bounded we 

set aside discussion of this and concentrate on the following equilibrium 

configurations. 

Definition 3 (Full Bidder Participation) If, in equilibrium, xc = 1, 

we speak of an equilibrium with full bidder participation (FBP ). 

While a FBP -equilibrium may well occur in the monopoly case, it 

should not be a concern in the duopoly case — unless one of the auc

tion sites suffers a mis-coordinated NTE, which one would rule out in 

any event. However, as we are focussed on the monopoly case at this 

point we will allow for the FBP -equilibrium to occur. 

Definition 4 (Partial Participation Equilibrium) A partial participa

tion equilibrium (PPE), is an equilibrium with positive expected trade, in 

which it may occur that no trade takes place. That is, in a PPE  we have 

0 < q,xc < 1. 
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Any equilibrium is implied by the bidders’ and the seller’s participa

tion problems implied by Equations (3) and (6). We repeated these here 

again, with (3) re-arranged for q: 

qD xc|cA, θ,N  ≥ ∑N−1 
( 
N−1 

) 
xn
cA + θxc , (7) 
c (1 − xc)N−1−nE[π(n)]n=0 n ⎛ ⎞ 

N 

qS (xc|f ,N) = G⎝∑ N 
xn(1 − xc)N−nE v(2)|n − f⎠ . (8)cn n=2 

The superscripts on the qs serve as a mnemonic for whether the condi

tions stem from the seller’s (supply) side of the market or the bidders’ 

(demand) side of the market. 

4.4.2 Analysis 

Lemma 5 (Existence of Equilibrium with Trade) An equilibrium with 

trade exists for given f , whenever there exits xc ∈ (0,1] such that 

qS(xc|f ,N)  ≥ qD xc|cA, θ,N  > 0. 

In equilibrium, seller participation is given by qS . 

The analysis of equilibrium existence and the derivation of properties 

of the equilibrium is done using the participation conditions given in 

Equations (7) and (8). These both give q as functions of xc . Note that 

both of these functions are continuous in xc . 

Consider the two functions in turn — beginning with (8). 

Definition 5 (Minimum bidder participation) Using Equation (8), de

fine 

xc := sup xc ∣qS (xc|f ,N) = 0 . 
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Then ∀f >  0, xc > 0 and xc is the threshold for bidder participation that 

at a minimum must be assured to make any seller participation worth

while. 

Now notice that it can be shown that for xc ≥ xc , 

d 
qS (xc|f ,N) > 0;

dxc 

and under mild assumptions on G, 

d2 

dxc 
2 qS (xc|f ,N) < 0. 

Note that ⎧ ∣ ⎨N 
xn(1 − xc)N−n ∣ = 

0, ∀n < N  
(9) ∣ ⎩n c 

xc =1 1, for n = N.  

So, 

qS (1|f ,N) = G E v(2)|N − f . 

In sum, the behavior of Equation (8) is such that it is constant at qS = 0 

for 0 < xc ≤ xc . Thereafter, for xc ≥ xc , it is concave and monotonically 

increases to qS = G E v(2)|N − f < 1 at  xc = 1. 

Consider now the behavior of Equation (7). 

Definition 6 (Minimum seller participation) Using Equation (7), de

fine 

q := sup qD|xc = 0 . 

Noting that ⎧ ∣ ⎨N − 1 ∣ 1, for n = 0 
xn(1 − xc)N−1−n ∣ = ∣ ⎩n c 

xc =0 0, ∀n >  0, 
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one obtains 

cA 

q = .
Evi 

Then ∀cA > 0, q > 0 and q is the threshold for seller participation that 

at a minimum must be assured to make any bidder participation worth

while. 

Now notice that it can be shown that 

d 
qD xc|cA, θ,N  > 0.

dxc 

Moreover, 

d2 
D 

dxc 
2 q xc|cA, θ,N  > 0. 

Again using (9), 

( ) cA + θ 
qD 1|cA, θ,N  = 

E[π(N)]
. 

Thus, qD = q at xc = 0 and then is convex and monotonically in

creases till qD = cA+θ 
E[π(N)] at 1. 

Proposition 1 (Existence of FBP -Equilibrium) A necessary and suffi

cient condition for the existence of a FBP -Equilibrium is that 

( ) cA + θ ( [ ] ) 
qD 1|cA, θ,N  = 

E[π(N)] 
≤ G E v(2)|N − f = qS (1|f ,N) . 

Proof The proof of sufficiency follows trivially from the equilibrium 

condition given in Lemma 5. And the proof of necessity follows from the 

preceding analysis. � 

Proposition 1 reveals that there are also unstable equilibrium points. 

Thus, 
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Corollary 1 (Unstable Equilibrium) If the inequality given in Proposi

tion 1 is strict, then there exist three equilibrium configurations (see Figure 

A): 

• an  NTE  (i.e., xc = 0) that is stable, 

• a PPE  (i.e., 0 < xc < 1) that is not stable, 

• an  FBP -Equilibrium (i.e., xc = 1) that is stable. 

If the condition in Proposition 1 holds with equality, the latter two equilib

rium configurations merge to the stable FBP -Equilibrium. 

Proof The proof follows since qD 0|cA, θ,N  > qS (0|f ,N), and both 

qD and qS are continuous functions, so, given the condition in the propo

sition, there must exist some xc ∈ (0,1) such that qD xc|cA, θ,N  = 

qS (xc|f ,N). However, the implied PPE  is unstable in the sense that 

an increase in seller participation increases bidder participation that in

duces further increased seller participation. � 

Proposition 2 (Sufficient Condition for Stable PPE) The following 

condition implies a unique stable PPE: 

∃ xc 
∗ ∈ (0,1) s.t. qS(xc 

∗) = qD(xc 
∗) and 

d 
qS(xc 

∗) ≤ 
d 
qD(xc 

∗).
dxc dxc 

Similarly to Corollary 1, a strict inequality in the condition in Propo

sition 2 implies the existence of an additional unstable equilibrium. See 

Figure B. 
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4.5 The Auction Hosting Site’s Problem 

The auction site maximizes it revenue by choice of the listing fee, f , 

taking into account how this affects the probability of sellers coming to 

auction, and thus affects the equilibrium. Specifically, changes is f affect 

the location of qS , while leaving qD unaffected. 

Lemma 6 Increasing f decreases qS and (thus) increases xc . 

Thus, if f is too large, qS will be so small that qD > qS for all xc > 0, 

and the NTE  is the unique equilibrium — as described in the market 

collapse in Example 1 (see Figures 7 and 8). Otherwise, notice that as 

both qD and qS are increasing, the host sites payoff is greater at the 

equilibrium with the greatest bidder participation, since this implies a 

great seller participation, while obtaining at the same fee as the other 

equilibrium. 

To rule this out, we make the following assumption. 

Assumption 1 (Potential for Positive Trade) When the auction host 

site operates free of any listing fee to the seller (f = 0) then there is poten

tial for trade. That is, 

∃ x′ > 0 s.t. qS(x′ |0, ·) = qD(x′ ).c c c 

If the xc 
′ given in the assumption is unique (see Figure A), then there 

are two branches to the host site’s objective function. For small f , the 

implied equilibrium is the one given in Proposition 1, for larger f (and, 

thus, decreased qS ) it is the one in Proposition 2. 
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The host site’s objective function is continuous in f , but not differ

entiable at the point where one switches from one to the other type of 

equilibrium. 

Hence, letting f ′ denote the level of f at which one switches from one 

branch to the other, the host site’s objective is to maximize 

qS (1|f ,N) × f = G E v(2)|N − f × f if f ≤ f ′ , 

qS(xc|f ,N)  × f s.t. qS(xc) = qD(xc) if f > f  ′ . 

Definition 7 (FBP -Equilibrium) A FBP -Equilibrium obtains whenever, 

G E v(2)|N − f∗ [ ] cA + θ
0 < f∗ ≡ 

g 
( 
E 
[ 
v(2)|N 

] − f∗ 
) ≤ f ′ ≡ E v(2)|N − G−1 

E[π(N)] 
. 

with xc = 1 and q = qS(1) = G E v(2)|N − f∗ . 

If xc 
′ is not unique (i.e., there are two values of xc under which As

sumption 1 holds — see Figure B), then the equilibrium we are interested 

in is the PPE  given in Proposition 2. In that case the host site’s problem 

is given by 

qS(xc|f ,  ·) × f → max! s.t. qS(xc|f)  = qD(xc) (10) 
{f} 

The constraint of the maximization problem implicitly defines xc as 

a function of f . This allows the objective to be studied as a function of 

f alone. Thus, the host site’s problem becomes one of maximizing 

qS(xc(f ), f ) × f 

The reformulated objective function is concave. There are two potential 

solutions to the problem, given as follows: 
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Definition 8 (PPE-Type I) In a Type I PPE  the first order conditions of 

the altered maximization problem are sufficient and yield the profit max

imum of the host site. We have, 

∂qS 

+ 
∂qS dxc f∗ + qS ( xc(f∗), f∗) = 0

∂f ∂xc df 

Definition 9 (PPE-Type II) A Type II PPE  is a knife-edge equilibrium. 

The functions qD and qS are tangent to one another, so a further increase 

in f leads to a market collapse, resulting in a NTE. We have, 

d d 
qS(xc 

∗) = qD(xc 
∗).

dxc dxc 

In this case the first order condition for profit maximization of the host site 

need not be satisfied. 

The Type I vs. Type II equilibrium is discussed at length in Example 1 

and is illustrated in Figures 7 and 8. 

Theorem 1 (Non-Vacuous Equilibrium Configurations) There exist 

meaningful parameter values so that any type of configuration given 

above — FBP -Equilibrium, PPE-Type I and PPE-Type II — emerges as 

the solution to the host site’s maximization problem. 

5 Issues in Duopolistic Host Site Competition 

We now consider equilibrium configurations when there are two hosting 

sites for auctions, one — as with the monopoly case — located at x = 0, 

the other located at x = 1. Thus, the sites are at the endpoints of a 

Hotelling-type linear city, that houses the bidders. However, they do not 
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directly compete for bidders, rather they choose listing fees from their 

sellers, which in turn affects where bidders browse. 

5.1 Concepts 

Since the analysis is obviously symmetric, we continue to argue from the 

vantage point of the hosting site located at x = 0. Where we need to 

distinguish the two sites, we index them A and B, respectively. E.g., the 

bidder cost of browsing site A is as before cA (see Lemma 3), but the cost 

of browsing at site B is given by cB . Similarly, while we let xcA denote the 

critical location up to which bidders attend auction site A, xcB gives the 

critical location beyond which bidders attend auction site B. 

5.1.1 Non-competitive equilibrium configurations 

We distinguish between two types of Non-competitive equilibrium con

figurations. 

Definition 10 (Hotelling without Competition) If both auction sites 

have are in a PPE  with xcA < xcB , then there is no competition between 

sites. 

A critical feature of this type of equilibrium is that both sites are 

open and active — as in a traditional Hotelling model. However, there is 

a range of bidder locations, i.e., xcA,xcB who do not attend either site. 

Hence the auction sites’ optimal policy is independent of the existence 

of a rival and the bidder and seller presence at one site are independent 

of the other site as well. We henceforth consider only parameter values 

for which this equilibrium does not exist. 
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Definition 11 (Monopolistic Equilibrium) We speak of a monopolistic 

equilibrium if only one site is open. 

The defining characteristic — and thus is major distinction from the 

Hotelling type equilibrium without competition — is that one of the sites 

has shut down. This equilibrium configuration can trivially arise if one 

of the auction site suffers a mis-coordinated NTE. However, as we shall 

soon explore, the monopolistic equilibrium can also be a unique equilib

rium outcome. 

5.1.2 Active Competition 

Consider now competition between the two sites when they both are open 

and have bidders and sellers present (in expectation). 

Definition 12 (Competitive Equilibrium) Let xcA denote the threshold 

bidder implied by site A’s monopolistically optimal fee, and define xcB anal

ogously. We speak of a Competitive Equilibrium if 

xcA > xcB (11) 

S S∃fA, fB s.t. fA ∈ arg max qAfA|fB & fB ∈ arg max qBfB|fA 

(12) 

In the competitive equilibrium, there is a bidder threshold denoted by 

xc 
∗ ∈ xcB,xcA such that all bidders to the left of xc 

∗ visit site A and the 

rest visit site B. Note specifically that if the sites are asymmetric, then 

xcA + xB 

xc 
∗ � c . 

2 

In other words, in contrast to a standard Hotelling model, in which other

wise overlapping market portions are shared evenly between firms, given 
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the heterogenous nature of competition in our model, when browsing 

costs differ between sites (i.e., cA ≠ cB ) costs of visiting and using sites 

are no longer symmetric. 

5.2 Analysis 

Theorem 2 (Competitive Equilibrium) There exists meaningful param

eter values for which a stable competitive equilibrium exists. 

Notice that since, by assumption, any potential seller is tied to a 

particular auction site, the sellers’ behavior is no different between the 

monopoly and the duopoly analysis. This, however, is not the case with 

bidders. While bidders’ participation thresholds in monopoly are given 

by Lemma 3, this must here be modified. 

In particular, for the critical bidder, we have 

N−1 

qA 

∑ N − 1 
(xc 

∗)n(1 − xc 
∗)N−1−nE[π(n)] − cA − θxc 

∗ 

n n=0 

N−1 

= qB 

∑ N − 1 
(xc 

∗)N−1−n(1 − xc 
∗)nE[π(n)] − cB − θ 

( 
1 − xc 

∗) . 
n n=0 

And thus, sellers participation rates between the sites translate into 

bidder participation rates at the two sites. In particular, we have the 

following relation: 

Lemma 7 Ceteris paribus, one host site’s bidder participation is inversely 

Srelated the rival host site’s seller participation. That is, an increase in qA 

leads to a decrease in qB
D . 

This result is useful to establish the following: 
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Theorem 3 (Unique Monopolistic Equilibrium) There exists meaning

ful parameter values for which only a unique monopolistic equilibrium 

exists. 

Proof [Sketch] Consider a stable constellation (i.e., one in which Condi

tion 11 holds and in which the first order conditions of the maximization 

problems in Condition 12 hold). Suppose further that at the resulting xc 
∗ , 

we have 

d d 
qB
S(x∗) � qB

D(x∗).
dxc 

c dxc 
c 

Then a discrete downward jump in the listing fee at firm A results in a 

discrete increase in qS By the Lemma, this yields a discrete increase in A. 

qB
D, leading to a tipping of firm B’s market and forcing it to shut down.� 

Thus, best-response functions need not be continuous and may have 

jumps in them. Moreover, this can be seen as a successful example of 

predatory pricing. The reason for this is that in order to operate, a host

ing site must attract sellers and buyers. So long as one’s pricing policy 

(here low fees) can shut off one side of the market of a rival, one has 

successfully driven a rival from the market. This outcome can be viewed 

as somewhat stable — and thus, the remaining firm may behave monop

olisitically ex post and raise its fee — since the NTE  at the other site is 

stable. 

6 Concluding Remarks and Future Work 

This paper derives the analytics of seller and buyer participation in auc

tion hosting sites and its implications for optimal auction hosting listing 
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fee pricing. It also investigates issues involving the competition between 

auction sites. Throughout, we assumed that the reserve (when used) is 

chosen by the seller independently. However, auction hosting sites may 

be able to influence the reserve the sellers can charge, or set and (pos

sibly) enforce reserve setting rules. The auction hosting site, unlike a 

seller, may benefit from establishing a reputation for low reserves, and 

thus attract more buyers. The auction hosting site has a stronger incen

tive to lower the reserve than does a single seller. A single seller is not 

likely to be able to establish a reputation for low reserves that attracts 

more customers to him or generate more traffic to the website. Even if 

successful in somewhat lowering the expected reserve in that site, thus 

generating more traffic, his action would generate positive spillovers for 

other sellers in that same site. The auction site owner would internal

ize these spillovers, as he would be able to charge higher fees. Thus, 

reserves set by auction hosting sites would be lower than those set by 

individual sellers. The investigation of whether reserves and listing fees 

are substitutes from the point of the website is one of the extensions we 

will consider. 

A second important question to be addressed are the welfare impli

cations of the a site’s monopoly power (in the single site case) and of the 

welfare loss from a site merger (in the duopoly case). Unlike traditional 

markets, site mergers have an important positive welfare enhancing role: 

They increase the number of sellers in a site, and thus reduce the likeli

hood that customers will incur browsing costs in vain. On the negative 

side, a mergers has the standard negative effect in terms of price in
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creases, which not only shifts surplus from consumers to the website, 

but also reduces surplus through the elimination of positive surplus ex

changes between buyers and sellers. There is, of course, the standard va

riety reduction effect of a merger, since the mean transport cost of buyers 

will increase post-merger. However, because the demand functions for a 

site’s services is very elastic, as shown in this paper, the monopoly pric

ing distortion may be very small. Therefore, it is possible that a merger 

from duopoly to monopoly may be welfare enhancing. 
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Figure 1. Location of critical consumer in monopoly.	 Figure 2. Seller revenue (gross of entry costs). 
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Figure 3. Market Equilibrium: Zero equilibrium supply (site shutdown). Figure 4. Market Equilibrium: Two interior entry equilibria (one stable). 
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Figure 6. Market Equilibrium: Effect of an increase in listing fees. 
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Figure 7. Market Equilibrium: Profitable increase in listing fees. Figure 8. Market destroying effects of marginal changes in the listing fee. 
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Figure 9. Auction hosting site demand curve.	 Figure 10. Comparison with "normal" (no feedback) auction 
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Figure 18. Market destroying effects of marginal changes in the 
listing fee with exponentially distributed costs. 
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participation costs: Exponentially distributed seller costs. 
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Figure 22. Optimal list fee as a function of the buyer participation 
costs: Exponentially distributed seller costs. 
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Figure 24. A closer look at the insensitivity of optimal fee to 
consumer attendence costs: Exponentially distributed seller costs. 
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Figure 25. Location of critical consumer in duopoly.	 Figure 26. Location of critical consumer in duopoly: changes in theta. 

1 

Xc qA qB_070, , cA_004 , cB_002 θ_006,( ) 

Xc qA qB_050, , cA_004 , cB_002 θ_006,( ) 

Xc qA qB_050, , cA_004 , cB_004 θ_006,( ) 
0.5 

SellerRevenueInA qA qB_080, , cA_001 , cB_001 θ_003, , fA_000 ( ) 

SellerRevenueInA qA qB_080, , cA_001 , cB_001 θ_005, , fA_000 ( ) 

SellerCosts qA µ_02,( ) 

0.2 

0.4 

0 

qA 

0 

qA 

0 0.2 0.4 0.6 0.8 0  0.5  1  

Figure 27. Location of critical consumer in duopoly: changes in Figure 28. Site Equilibrium with exponentially distributed seller 
other parameters. costs: Changes in theta. 
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Figure 29. Site equilibrium with exponentially distributed seller costs: Changes in seller activity at competing site. 

0.8 

0.6 
EquilSellerActivityInA cA_002( , cB_002 , fA_000 , fB_000 , θ_005, µ )


EquilSellerActivityInA cA_002( , cB_002 , fA_003 , fB_003 , θ_005, µ )


0.4 

0.2 

0 
0.06 0.08 0.1 0.12 0.14 0.16 

µ 

Figure 30. Equilibrium seller activity levels with exponentially distributed seller costs, as a function of mean seller costs: Symmetric sites. 
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Figure 31. Symmetric equilibrium with exponentially distributed seller costs. 
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Figure 32. Asymmetric equilibrium with exponentially distributed seller costs. 


